Login
Login

APHRC Online Microdata Library
  • Home
  • About APHRC
  • Datasets
  • Collections
  • Citations
  • Resources
  • How to use it?
  • Why sharing data?
  • Contact us
    Home / Central Data Catalog / HEALTH_AND_WELL-BEING / DDI-KEN-NGA-PHRC-DAYTA-2023-V1.0 / variable [V6]
Health_and_Well-Being

Primary Research for the Data on Youth and Tobacco in Africa (DaYTA) program, DaYTA

KENYA and NIGERIA, 2024
Health and Well-Being (HaW)
Shukri Mohamed, PharmD, PhD
Last modified October 02, 2025 Page views 6927 Documentation in PDF Metadata DDI/XML JSON
  • Study description
  • Documentation
  • Data Description
  • Get Microdata
  • Data files
  • DaYTA
    Household_dataset_Kenya
  • DaYTA
    Individual_dataset_Kenya1
CSV JSON

Sub location (sublocation)

Data file: DaYTA Household_dataset_Kenya

Overview

vald 6435
invd 0
Interval discrete
Decimal 0
Range 1001 - 1234

Questions and instructions

Literal question
Sub-Location
Categories
Value Category Cases
1001 Jomvu Kuu 29
0.5%
1002 Magogoni 30
0.5%
1003 Majengo 29
0.5%
1004 Ziwa la Ng'ombe 30
0.5%
1005 Ng'ombeni 30
0.5%
1006 Tsangalaweni/Ganze 23
0.4%
1007 Chalani/Mihingoni 28
0.4%
1008 Mnyenzeni 30
0.5%
1009 Vinagoni 30
0.5%
1010 Majaoni/Mtondia 29
0.5%
1011 Kiriba/Wangwani 30
0.5%
1012 Kijipwa 29
0.5%
1013 Mambrui 27
0.4%
1014 Bura 25
0.4%
1015 Ganda 29
0.5%
1016 Central 29
0.5%
1017 Shella 30
0.5%
1018 Kinunguna/Forodhani 30
0.5%
1019 Mgumo Wa Patsa 30
0.5%
1020 Kokar 0
0%
1021 Bura 30
0.5%
1022 Daley 30
0.5%
1023 Township 0
0%
1024 Welhar 30
0.5%
1025 Owliya 0
0%
1026 Shant Abak 30
0.5%
1027 Karare 30
0.5%
1028 Wabera 28
0.4%
1029 Township 58
0.9%
1030 Funanyatta 30
0.5%
1031 Ntumburi 30
0.5%
1032 Upper Katheri 30
0.5%
1033 Rungu 30
0.5%
1034 Nthambiro 27
0.4%
1035 Laare 29
0.5%
1036 Nkandone 30
0.5%
1037 Antuanthama 27
0.4%
1038 Kongoacheke 29
0.5%
1039 Kiamwitari 30
0.5%
1040 Magundu 26
0.4%
1041 Kaaga 1 30
0.5%
1042 Tuntu 26
0.4%
1043 Maraa 30
0.5%
1044 Kaurone/Murinda 30
0.5%
1045 Kirirwa 29
0.5%
1046 Kathwene 0
0%
1047 Gikurune 29
0.5%
1048 Mwili 27
0.4%
1049 Kilawa 28
0.4%
1050 Wikililye 30
0.5%
1051 Kalundu 30
0.5%
1052 Malili 0
0%
1053 Kaghui 0
0%
1054 Kavuvuu 29
0.5%
1055 Katia 0
0%
1056 Yongela 27
0.4%
1057 Kandae 28
0.4%
1058 Katalwa 29
0.5%
1059 Kilonzo 30
0.5%
1060 Thage-Ini 30
0.5%
1061 Thatha 30
0.5%
1062 Thirigitu 30
0.5%
1063 Kabendera 30
0.5%
1064 Endarasha 30
0.5%
1065 Njeng'u 30
0.5%
1066 Chehe 30
0.5%
1067 Barichu 30
0.5%
1068 Kaiyaba 30
0.5%
1069 Ihuririo 29
0.5%
1070 Gitundu 29
0.5%
1071 Gikoe 29
0.5%
1072 Karecheni 29
0.5%
1073 Kariara 30
0.5%
1074 Kamakwa 30
0.5%
1075 Nyaribo 29
0.5%
1076 Majengo 26
0.4%
1077 Ruringu 29
0.5%
1078 Nyagithuchi 20
0.3%
1079 Gathuthuma 30
0.5%
1080 Kagumo 26
0.4%
1081 Gatu 30
0.5%
1082 Kianguenyi 30
0.5%
1083 Kiaumbui 30
0.5%
1084 Kanyokora 30
0.5%
1085 Nyangio 30
0.5%
1086 Karima Dawa 30
0.5%
1087 Kiarukungu 30
0.5%
1088 Kithiriti 30
0.5%
1089 Kimbimbi 30
0.5%
1090 Kianjogu 30
0.5%
1091 Kiratina 29
0.5%
1092 Namoruputh 30
0.5%
1093 Tiya 29
0.5%
1094 Kanamkemer 27
0.4%
1095 Napetet 27
0.4%
1096 Lochoraikeny 30
0.5%
1097 Lokore 28
0.4%
1098 Kaalem 30
0.5%
1099 Lochwaa 29
0.5%
1100 Kapese 30
0.5%
1101 Lokichar 30
0.5%
1102 Lokangae 29
0.5%
1103 Saboti 28
0.4%
1104 Teldet 30
0.5%
1105 Tuwan 30
0.5%
1106 Grassland 27
0.4%
1107 Kimoson 30
0.5%
1108 Michai 29
0.5%
1109 Kachibora 22
0.3%
1110 Milimani 30
0.5%
1111 Keiyo 29
0.5%
1112 Kobos 30
0.5%
1113 Bidii 27
0.4%
1114 Endebess 29
0.5%
1115 Kaptega 29
0.5%
1116 Baraton 30
0.5%
1117 Weonia 30
0.5%
1118 Kiminini 28
0.4%
1119 Kapkoi Sisal 30
0.5%
1120 Naisambu 30
0.5%
1121 Baraton 30
0.5%
1122 Kapngetuny 26
0.4%
1123 Kaptobongen 30
0.5%
1124 Mateget 30
0.5%
1125 Kiminda 30
0.5%
1126 Tulon 24
0.4%
1127 Ketbarak 30
0.5%
1128 Cheptabach 30
0.5%
1129 Cheptonon 30
0.5%
1130 Kebulonik 29
0.5%
1131 Kaigat 30
0.5%
1132 Chepkurngung 29
0.5%
1133 Kapkemich 30
0.5%
1134 Mosombor 28
0.4%
1135 Kapsoen 30
0.5%
1136 Muhonia 28
0.4%
1137 Wiyumiririe 27
0.4%
1138 Matanya 27
0.4%
1139 Majengo 30
0.5%
1140 Likii 27
0.4%
1141 Kalalu 30
0.5%
1142 Murichu 28
0.4%
1143 Ndurumo 30
0.5%
1144 Thigio 30
0.5%
1145 Mwenje 29
0.5%
1146 Losogwa 27
0.4%
1147 Ndunyu 29
0.5%
1148 Budubusi 29
0.5%
1149 Bukani 24
0.4%
1150 Siginga 28
0.4%
1151 Mundika 29
0.5%
1152 Mjini 58
0.9%
1153 Mabunge 30
0.5%
1154 Emukhweso 30
0.5%
1155 Kingandole 30
0.5%
1156 Malanga 30
0.5%
1157 Kisoko 30
0.5%
1158 Agenga 30
0.5%
1159 Nyakhobi 29
0.5%
1160 Komiriai 29
0.5%
1161 Ikapolok 30
0.5%
1162 Mwari 29
0.5%
1163 Kolait 30
0.5%
1164 Kamunuoit 60
0.9%
1165 Amerikwai 30
0.5%
1166 Olepito 29
0.5%
1167 Kombok South 30
0.5%
1168 Kasidula 29
0.5%
1169 South Kanyamgony 30
0.5%
1170 Bongebo 29
0.5%
1171 Nyamaharaga 28
0.4%
1172 Igena 30
0.5%
1173 Nyamotambe 30
0.5%
1174 Nyangoge 30
0.5%
1175 Okayo 29
0.5%
1176 Lower Karapolo 30
0.5%
1177 Kangeso 29
0.5%
1178 Rongo Township 30
0.5%
1179 Wasweta I 27
0.4%
1180 Osingo North 29
0.5%
1181 Kwa 30
0.5%
1182 Oruba 30
0.5%
1183 Wasweta II 26
0.4%
1184 Got Uriri 28
0.4%
1185 Central Kajulu 30
0.5%
1186 Raitigo 30
0.5%
1187 Kiabiraa 29
0.5%
1188 Nyaguku 29
0.5%
1189 Kebirichi 26
0.4%
1190 Kegogi 30
0.5%
1191 Nyamauro 28
0.4%
1192 Nyakenimo 30
0.5%
1193 Nyameru 29
0.5%
1194 Kebirigo 28
0.4%
1195 Gatina 30
0.5%
1196 Ngando 30
0.5%
1197 Mutuini 30
0.5%
1198 Embakasi 0
0%
1199 Kware 48
0.7%
1200 Kwa Reuben 30
0.5%
1201 Kayole South 25
0.4%
1202 Savannah 28
0.4%
1203 Umoja 1 22
0.3%
1204 Kiambiu 0
0%
1205 Githurai 81
1.3%
1206 Zimmerman 26
0.4%
1207 Gitathuru 28
0.4%
1208 Mutirithia 0
0%
1209 Mathare North 0
0%
1210 Lindi 28
0.4%
1211 Lang'ata 0
0%
1212 Bahati 25
0.4%
1213 Viwandani 26
0.4%
1214 Kiamaiko 25
0.4%
1215 Dandora III & V 26
0.4%
1216 Kariobangi South 26
0.4%
1217 Kayole North 30
0.5%
1218 Kamulu 23
0.4%
1219 Pangani 0
0%
1220 Karura 0
0%
1221 Mt View 30
0.5%
1222 Danyere 30
0.5%
1223 Nairobi West 0
0%
1224 Balambala 30
0.5%
1225 Nkando 30
0.5%
1226 Loresho 29
0.5%
1227 Kituti 30
0.5%
1228 Ivovoa 30
0.5%
1229 Katwala 29
0.5%
1230 Tassia 0
0%
1231 Kibera 30
0.5%
1232 Airbase 27
0.4%
1233 Mihango 18
0.3%
1234 Kangemi Central 25
0.4%
Warning: these figures indicate the number of cases found in the data file. They cannot be interpreted as summary statistics of the population of interest.
Question pretext
MODULE 1: HOUSEHOLD ROSTER
Question post text
N/A
Interviewer instructions
N/A

Description

Text
Sub location where the study took place
Universe
Household head(Male/Female)

Concept

Concept
var_concept.name
N/A
APHRC Microdata Portal

© APHRC Microdata Portal, All Rights Reserved. Slot Online